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GFDL Institutional Commitment 
GFDL is institutionally committed to realizing a numerical ocean model tool 
of highest scientific and engineering integrity and utility, with MOM being 
that tool. The primary scientific applications of MOM at GFDL concern 
mechanistic ocean research and dynamical ocean predictions, with these 
areas providing a focus for ongoing development.  

GFDL Scientific Leadership Provides  
•  Intellectual vision for MOM’s evolution required to retain its position at the 

leading-edge of numerical ocean models,  meeting the needs of global and 
regional ocean climate science and prediction;  

•  Scientifically vetted configurations (e.g., CM2.1, ESM2M, CM2.5-ocean) for use 
by the broader scientific and operational communities; 

•  Development of numerical methods and physical parameterizations that enhance 
simulation integrity, fidelity, and utility; 

•  Software engineering to meet the needs of evolving computational hardware; 
•  Scientific and engineering documentation via peer-review articles and technical 

manuals; 
•  Coordination of contributions from the broader MOM community. 

GFDL	
  &	
  MOM	
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Hydrostatic primitive equation ocean code  
•  Primary GFDL application is global ocean climate science, now moving 

into the global mesoscale eddy resolving regime (other talks today).  
•  Generalized level coordinates (z,z*,p,p*) in vertical with B-grid horizontal 
•  Regional and operational applications (e.g., Australian BlueLink) 
•  Extensive online diagnostic features (many 100s of diagnostics) 
•  Freely available under GNU public license 

MOM is the world’s primary community ocean climate code     
•  ~500 registered users of MOM4 and a growing list for MOM5  
•  Hundreds (thousands) use (used) earlier MOMs 
•  Open source release of MOM5 via mom-ocean.org 

Characteris;cs	
  of	
  MOM5	
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MOM	
  Development	
  and	
  Use:	
  3-­‐way	
  interac;on	
  

Tracer cells T(i,j) with fluxes and land/sea masking

X = corner point
(=B-grid velocity point)
(=C-grid vorticity point)
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4.8.3 Comments about diagnosing the dia-surface velocity component
We emphasize again that a critical element in the Eulerian algorithms for diagnosing the vertical velocity
components is the ability to exploit the depth independence of the specific thickness z,s for the depth based
coordinates for a Boussinesq fluid, and the density weighted specific thickness ρ z,s for the pressure based
coordinates for a non-Boussinesq fluid. These properties allow us to remove the time tendencies for surface
height and pressure from the respective diagnostic relations by substituting the depth integrated budgets
(4.63) for the depth based models, and (4.72) for the pressure based models. Absent the depth independence,
one would be forced to consider another approach, such as the time extrapolation approach to approximate
the time tendency proposed by Greatbatch et al. (2001) and McDougall et al. (2002) for implementing a
non-Boussinesq algorithm within a Boussinesq model.

4.9 Vertically integrated horizontal momentum
We now outline the split between the fast vertically integrated dynamics from the slower depth dependent
dynamics. This split forms the basis for the split-explicit method used in MOM to time step the momentum
equation. For this purpose, we formulate the budget for the vertically integrated momentum budget.

4.9.1 Budget using contact pressures on cell boundaries
Before proceeding with a formulation directly relevant for MOM, we note the form of the vertically integrated
budget arising when we consider pressure acting on a cell as arising from the accumulation of contact
stresses. For this purpose, we vertically sum the momentum budgets given by equations (2.225), (2.228)
and (2.233), which leads to

(∂t + f ẑ∧)
�

(dzρu) = −
��

ẑ ∧ (dzMρu) + ∇s · [ dz u (ρu)]
�

+
��
−∇s (p dz) + dzρF

�

+ [ pa ∇ η + τwind + ρw Qm um ]

+ [pb ∇H − τbottom].

(4.124)

Contact pressures on the top and bottom of the grid cells cancel throughout the column, just as other
vertical fluxes from momentum and friction. The remaining contact pressures are from the bottom and
top of the ocean column and the vertically integrated contact pressures on the sides of the fluid column.
Correspondingly, if we integrate over the horizontal extent of the ocean domain, we are left only with
contact pressures acting on the solid boundaries and undulating free surface. Such is to be expected, since
the full ocean domain experiences a pressure force only from its contact with other components of the earth
climate system.

4.9.2 Budget using the pressure gradient body force
As discussed in Section 2.8.2, we prefer to formulate the contribution of pressure to the linear momentum
balance as a body force, whereby we exploit the hydrostatic balance. Hence, to develop the vertically
integrated horizontal momentum budget, we start from the form of the budget given by equations (3.19),
(3.20), and (3.21), rewritten here for the interior, bottom, and surface grid cells

[∂t + ( f +M) ẑ∧ ] (dzρu) = ρdzS(u) − ∇s · [ dz u (ρu)]
− dz (∇s p + ρ∇sΦ) + dzρF

− [ρ (w(z) u − κu,z) ]s=sk−1

+ [ρ (w(z) u − κu,z) ]s=sk

(4.125)
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tracer and mass budgets. To do so, recall the tracer budgets for the interior, bottom, and surface grid cells,
given by equations (2.153), (2.161), and (2.171)

∂t(dzρC) = dzρS(C) − ∇s · [dzρ (u C + F)]

− [ρ (w(z) C + F(s))]s=sk−1

+ [ρ (w(z) C + F(s))]s=sk .

∂t (dzρC) = dzρS(C) − ∇s · [dzρ (u C + F)]

−
�
ρ (w(z) C + F(s))

�
s=skbot−1

+Q(C)
(bot)

∂t (dzρC) = dzρS(C) − ∇s · [dzρ (u C + F)]

+
�
ρ (w(z) C + F(s))

�
s=sk=1

+Qm Cm −Q(turb)
(C) .

Summing these budgets over a vertical column leads to

∂t
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(4.74)

As expected, the only contributions from vertical fluxes come from the top and bottom boundaries. Further-
more, by setting the tracer concentration to a uniform constant, all the turbulent flux terms vanish, in which
case the budget reduces to the vertically integrated mass budget discussed in Section 4.6.2. This compatiblity
between tracer and mass budgets must be carefully maintained by the discrete model equations.1

4.8 Diagnosing the dia-surface velocity component

The key distinction between Eulerian vertical coordinates and Lagrangian vertical coordinates is how they
treat the dia-surface velocity component

w(z) =
∂z
∂s

ds
dt
. (4.75)

The Lagrangian models prescribe it whereas Eulerian models diagnose it. The purpose of this section is
develop Eulerian algorithms for diagnosing the dia-surface velocity component for the depth based and
pressure based vertical coordinates of Chapter ??. As we will see, a crucial element for the utility of
these algorithms is that the specific thickness z,s is depth independent using depth based coordinates in
a Boussinesq fluid, and ρ z,s is depth independent using pressure based coordinates in a non-Boussinesq
fluid.

1As discussed by Griffies et al. (2001), local conservation of an algorithm for tracer and volume/mass can readily be checked by
running a model with uniform tracer concentration and blowing winds across the ocean surface. Surface height undulations will
ensue, thus causing changes in volume for the grid cells. But the tracer concentration should remain uniform in the absence of surface
fluxes. Changes in tracer concentration will not occur if the volume/mass and tracer budgets are compatible in the sense defined in
this section.

Observa;ons/Processes/Theories	
  

Numerical	
  Methods	
  and	
  Parameteriza;ons	
  

Simula;ons	
  and	
  Analyses	
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Well understood/trusted simulations of high integrity 
•  Huge repository of research/operational experience & 

documentation/publications (we are nearly 50 years since 
Bryan (1963) initiated ocean modeling at GFDL!) 

•  GFDL commitment/sanction & community support/participation  

Easy to use for many applications 
•  New configurations readily developed  
•  Numerous test cases from idealized to global coupled climate 
•  Multiple state-of-science methods and parameterizations 
•  Extensive user community extending over multiple generations  

A Technical Guide to MOM4

GFDL OCEAN GROUP TECHNICAL REPORT NO. 5

AUTHORS FOR MOM4.0

STEPHEN M. GRIFFIES, MATTHEW J. HARRISON,
RONALD C. PACANOWSKI, AND ANTHONY ROSATI

ADDITIONAL CONTRIBUTIONS FROM

ZHI LIANG, MARTIN SCHMIDT,
HARPER SIMMONS, AND RICHARD SLATER

335pages 

Elements of MOM4p1

STEPHEN M. GRIFFIES
NOAA Geophysical Fluid Dynamics Laboratory

Princeton, USA

WITH CONTRIBUTIONS FROM
MARTIN SCHMIDT (WARNEMÜNDE, GERMANY)
MIKE HERZFELD (CSIRO-HOBART, AUSTRALIA)

444pages 

518+xxxiv pages 

682+xxvi pages 
—Draft— Feb 2000 —

329+xxi pages 

Corel Gallery 2

Version 2.0 (!"#$)

Documentation

 User’s Guide

 and

 Reference Manual

!"#$%"&'(&)*+,-"&./&0,1,+*234#

Release date: Nov 7,1996

GFDL Ocean Technical Report 3.2

MOM	
  Documenta;on	
  and	
  Support	
  

618 + xiii pages 
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MOM5	
  
•  Released	
  October	
  2012	
  	
  

•  Web	
  site	
  and	
  ac;ve	
  online	
  community:	
  mom-­‐ocean.org	
  

•  ~15	
  test	
  cases	
  including	
  CM2.1	
  (IPCC	
  AR4)	
  and	
  ESM2M	
  (IPCC	
  AR5)	
  	
  

•  Open	
  access	
  with	
  community	
  contribu;ons	
  

•  Online	
  user/developer	
  community	
  with	
  shared	
  intellectual	
  resources	
  

MOM6	
  (also	
  see	
  Ram’s	
  last	
  slide)	
  
•  Built	
  from	
  selected	
  physics/numerics	
  based	
  on	
  experience	
  from	
  the	
  GFDL-­‐GOLD	
  

ocean	
  code	
  (Generalized	
  Ocean	
  Layer	
  Dynamics)	
  and	
  MOM5.	
  	
  

•  So\ware	
  restructured	
  to	
  enable	
  MOM/GOLD	
  algorithm	
  unifica;on,	
  and	
  to	
  u;lize	
  
emerging	
  heterogeneous	
  computer	
  hardware.	
  

•  Commitment	
  to	
  MOM6	
  being	
  a	
  community	
  code,	
  following	
  in	
  the	
  MOM	
  lineage.	
  	
  
Note:	
  GFDL	
  is	
  incorpora;ng	
  the	
  Los	
  Alamos	
  sea	
  ice	
  model,	
  CICE,	
  for	
  its	
  climate	
  modeling,	
  
thus	
  aligning	
  GFDL	
  to	
  the	
  broader	
  sea	
  ice	
  community.	
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GFDL	
   is	
   engaged	
   in	
   a	
   mul;-­‐year	
   project	
   to	
   unify	
   capabili;es	
   from	
  
MOM5	
  with	
  GFDL’s	
  generalized	
  layered	
  ocean	
  model,	
  GOLD.	
  	
  	
  

–  MOM6	
  is	
  mo;vated	
  by	
  ocean/climate	
  science	
  challenges:	
  	
  
•  Wide	
  range	
  of	
  ;me	
  scales	
  –	
  seasonal	
  to	
  decadal	
  to	
  centennial	
  	
  

•  Wide	
  range	
  of	
  space	
  scales	
  –	
  e.g.,	
  mesoscale	
  eddy	
  resolving	
  for	
  global	
  climate	
  

•  Increasingly	
  comprehensive	
  –	
  e.g.,	
  coupling	
  to	
  biogeochemistry,	
  ecosystem,	
  and	
  ice	
  
shelf	
  models	
  

–  MOM6	
  will	
  employ	
  state-­‐of-­‐the-­‐science	
  numerical	
  methods	
  and	
  physical	
  
parameteriza;ons	
  that	
  are	
  key	
  to,	
  for	
  example,	
  	
  

•  respec;ng	
  the	
  integrity	
  of	
  ocean	
  water-­‐masses	
  
•  capturing	
  transient	
  climate	
  fluctua;ons	
  

•  predic;ng	
  climate	
  varia;ons	
  

•  projec;ng	
  future	
  climate	
  change	
  

–  MOM6	
  will	
  incorporate	
  GOLD’s	
  func;onality	
  for	
  generalized	
  ver;cal	
  layers,	
  and	
  
will	
  retain	
  a	
  direct	
  link	
  to	
  scien;fically	
  important	
  MOM	
  configura;ons.	
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